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Abstract: Free-energy-perturbation theory from molecular dynamics calculations
has been used to obtain the�G of adjoining cavities× formation in water. The�Gs for
systems with three, five and seven cavities are compared with that of a single cavity of
the same volume, and found to be in good agreement. The conditions under which
the analytical formulation of the energy of cavity formation proposed by Pierotti
holds are discussed. The data for a single cavity have been tabulated and can lend
themselves to a simple numerical implementation in standard quantum chemical
packages, which can be used when high accuracy for �Gcav is required.
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Introduction

Intermolecular interactions are the sum of several terms,
which include electrostatic, repulsion, induction and disper-
sion terms. In explicit solvent models, solvent ± solute inter-
actions are described in this way; however, the introduction of
implicit solvent models has brought in a new term, namely the
free energy of cavity formation, �Gcav, or FEC.[1] This is the
reversible work spent in the process of making a hole or a
cavity in a solvent. To a first approximation, it depends on how
many particles must be displaced, their size, the interactions
present in the solvent, the pressure and the temperature.
Pierotti developed a general analytical equation, PE, to
obtain the cavitation energy as a function of the cavity×s
radius, which contains explicitly the reduced number density
(that is, how many particles are present in a volume element–
which, in turn, depends on the temperature), the solvent hard-
sphere radius, the pressure and the temperature. Because of
the way used by Pierotti to develop his approach (i.e. , scaled
particle theory), entropic contributions are not well accounted
for.[1] This is especially true in rather extreme cases, such that
of water, where its strong and dynamical hydrogen bonding
may produce sizeable energy contribution when a molecule
protrudes inside the cavity. So far, the best independent
support for PE was given by Postma, Berendsen and Haak,
PBH, who compared its values with the results of free-energy-

perturbation, FEP, calculations[2] obtained from molecular
dynamics simulations. In the PBH approach, a number of
calculations were run with a repulsive potential set inside a
box of 216 water molecules in order to create a cavity.
Modification of the parameters of the potential energy
functions, changed the size of the cavity. This pioneering
work was one of the first exhaustive free-energy-perturbation
calculations on solvent effects. In practice, five radii of cavities
were considered and allowed PBH to conclude that 1) it is
possible to obtain the free energy of cavity formation from
molecular dynamics calculations and 2) PE agrees well with
the results of the simulations.

The Pierotti equation has now become so popular that it has
been incorporated in a number of implicit solvent models of
routine use in quantum chemistry. Importantly, when using
PE, the free energy of cavity formation for a solute molecule
is usually calculated with a set of scaled contributions from
individual interpenetrated spheres and not with the molecular
contour. One might, however, wonder if the standard
approach could be replaced by considering a single cavity.
Furthermore, given, the widespread computer power pres-
ently available, one could also consider a finite-differences
approach that would extend the approach pioneered by PBH
and obtain FEC in the form of a grid of points. The numerical
approach of tabulating the molecular dynamics data would
extend and generalise PE to cases in which it does not hold.

Here, we calculate the water-cavity energy for one, three,
five and seven adjacent spheres and tabulate the FEC as a
function of the radius using a recent and accurate force field.
The conditions for the best agreement between PE and FEP
calculations are discussed.

Computational Methods

The simulations were run with the TINKER 3.8 program,[3] which has
found several satisfactory applications in our laboratory.[4] Water was
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simulated with Ponder×s multipole-based force field.[5] The box size was
dimensioned to reproduce the experimental density at T� 300 K. Changes
in the size of the box occur because of the variation of the cavity radius and
the pressure coupling.[6] Internal degrees of freedom were allowed to relax.
Trajectories were calculated for 100 ps with a time step of 1.0 fs, the first
25 ps were used for equilibration. To create the cavity, a potential of the
type

Vc,w� �
B

r

� �
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was introduced at the centre of a box of 216 molecules of water. B defines
the cavity radius and all the intermediate cavity radii Bi correspond to a
well-defined value of 0� �� 1 (note that PBH use thermal radii ; to obtain
the corresponding Bi values they must be divided by 1.0044047). As the
cavity repulsive radius tends to zero, the potential introduces a disconti-
nuity that can be avoided by the use of a softer potential[7]
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between 0 and 1 ä, in which n� 12, although other choices can be made.
Figure 1 illustrates this soft potential for selected Bi values of the cavity

radius. In analogy to the overlapping-spheres technique used by PBH, the
potential Vc,w(�) is expressed in terms of Bi through two steps that exploit
Equations (1) and (2), in which the subscript c stands for cavity, the
subscript w stands for water, and r is the smallest distance between any
atom of a water molecule and the centre of the cavity. In their work, PBH
set Bi to 0.96, 1.71, 2.28, 2.86, and 3.04 ä. Here, a total of 24 points are used.
They are 0.5, 0.6, 0.65, 0.67, 0.7, 0.8, 0.9, 1.00 ä, which were chosen because
they smooth out the singularity at the origin and make it disappear, and
then 15 equally spaced points between 1 and 2.28 ä with increments of
0.08 ä.

Small variations of Bi around the selected cavity value gave the free energy,
which is calculated as
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Here the energy is calculated at one of the reference Bi values over the
ensemble of particles in the unperturbed state iwith small perturbations �B
along the trajectory, kB is the Boltzmann constant, and the perturbation Vp

is caused by the change from Bi to Bref�Bi� �B

Vp(Bref)�
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which was calculated at one of the reference values given above, with k that
runs over the water atoms. The various VP(Bref) must connect adiabatically
for �B values both positive and negative. This requirement is implicit in the
definition of the cavity energy as reversible work, and in the free-energy-
perturbation model. Moreover, its value must be at most of the order of

kBT for perturbation theory to hold. The �B were set to multiples of
0.0032 ä, which generated 25 perturbation points between pairs of
trajectories in the region where the potential of Equation (1) was used.
In the initial step, in which Equation (2) was used �B was scaled down as
needed. Because of the nature of Equation (3), there is a redundancy of
values of Vp, and of the associated �Gcav, around a given Bi . As an example,
and only as an example, V(1.8384), can be obtained from Bi� 1.8 ä by
setting �B� 0.0384 ä, or from Bi� 1.88 ä by setting �B��0.0416 ä; or
V(1.8192), can be obtained from Bi� 1.8 ä by setting �B� 0.0192 ä, or
from Bi� 1.88 ä by setting �B��0.0608 ä. The sum of the first two
should be the same as the sum of the last two, and should also be equal to all
the sums of the other pairs that connect Bi� 1.8 ä with Bi� 1.88 ä (this is
the principle of overlapping-spheres techniques of ref. [2]). In reality, this
does not happen all the time. The differences provide a way of estimating
the error in the procedure (as the largest difference between the points).
Importantly, if some values do not fulfil the kBT criterion, they are
discarded. The final �G(B) is the sum over the successive incremental �G
values with cavity radii smaller than B.
The analytical expression of the free energy of cavity formation given by
Pierotti reads

�Gc�K0 � K1rB � K2rB2 � K3rB3 (5)
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here rB� (a � a2)/2 is the cavity radius given by half the sum of the solvent
hard-sphere diameter, a, and the solute hard-sphere diameter, a2, y��a3�/6
is the volume fraction of the solvent spheres, � is the number density of the
pure solvent, p is the pressure. At atmospheric pressure, the last addends,
linear in p, are negligible. Notice that rB and Bi coincide for many practical
purposes; however, the former describes the cavity when the solute is
present, while the latter is used in the FEP calculations where a ™bubble∫ of
vacuum is blown up inside water. For clarity×s sake, we feel that it is
important to retain the distinction.

Results and Discussion

Figure 2a shows the free energy of formation of a single cavity
as a function of its radius. The trend is smooth and the error
bars grow with the radius of the cavity because, as explained in
the previous section, the error in the procedure is additive and
increases with the size of the cavity. (Comparison with the
values calculated by PBH is shown later along with other FEC
data.)

Two important issues must be addressed:
1) The agreement between the data in Figure 2a and those

predicted by Pierotti×s formula,
2) The approximation caused by replacing several adjoining

cavities with a single cavity of the same volume, that is by
replacing the molecular contour with a single sphere.

To investigate the first point, one must consider that in
Equation (5) rB� (a� a2)/2 is the sum of the hard-sphere radii
of solvent and solute. From Equations (5) and (6) it is

Figure 1. Potential energy curves from Equation (2) for selected values of
the cavity radius, Bi . In the inset, the values of �.
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Figure 2. a) Free energy of cavity formation from the present FEP
calculations, b) solvent hard-sphere radius that gives the best agreement
between the FEP calculations and Equations (5) and (6), c) Comparison
between FEP (�: present calculations, �: PBH) and PE by using
Gaussian 98 (The Gaussian 98 cavitation energy was obtained by setting
the solvent radius to 1.40 ä (�) and 1.6 ä (�) and then performing HF/3-
21G PCM calculations on Cl� anions with a growing size, comparable to the
hard-sphere cavities of the FEP calculations.

apparent that the data of Figure 2a can be obtained by an
infinite number of combinations of values of a and a2. It is,
however, simple to invert Equation (5) by using the present
FEP results and determine which values of a and a2 best fit the
calculated data. Because of the applications in quantum
chemical packages, the knowledge of the diameter, a, of water
is important. For each of the overall radii of Figure 2a,
Figure 2b shows the plot of the solvent radius that gives the
best agreement between the FEP calculations and PE. The
result is a curve that deserves closer inspection. Two regions
can be noted:
1) When B is small, that is, less than 1.6 ä, PE is most

successful if the cavity is entirely due to the solvent, a
feature that is not unexpected since the solvent contributes

to the radius of the cavity. The trend is not perfectly linear
and some irregularities are present. They are ascribed to
the numerical procedure that is used to obtain the curve
and should not have any physical implication,

2) At larger values of B, that is, B� 1.6 ä, the water radius
that best satisfies PE tends towards the limiting value of
1.6 ä.

In practice, since in an implicit solvent model the cavity is
defined by the solvent and solute radii, only the second region
can be adequately treated by Pierotti×s approach. For regions
with small cavity diameter, the use of Equation (5) should
therefore be discouraged.

Figure 2c compares the present results with the PBH data
and with those obtained by a standard quantum chemical
package when the two values of 1.4 and 1.6 ä are used in
Equation (5). Note that 1.4 ä is the default value for water in
the program.[8] When the cavity is not too large, the FEP
calculations lead to the largest �Gcav of the four shown here,
and they are also close to the results of PE when the water
radius is set equal to 1.6 ä. The satisfactory similarity with the
PBH data implies that the calculations are not a strong
function of the force-field model used to simulate water. The
default value of 1.4 ä set in the quantum chemical package
leads to the lowest �Gcav. Because of the variability of the
radii that one would have to use in Pierotti×s formula, it is
suggested that when high accuracy is required, the FEP
calculations could be directly looked up in Table 1. These
values can be interpolated or extrapolated rather easily once
the solute hard-sphere radius is determined.

The second issue raised at the beginning of the section
concerns the comparison of the �Gcav of several spherical
systems in contact through a single point with that of a single

Table 1. Free energy of cavity formation, �G [kcalmol�1], from the free-
energy-perturbation calculations. In agreement with PBH, each cavity
radius [ä] is multiplied by 1.044 to obtain the thermal radius and then by
1.0704 to obtain the hard-sphere radius. The origin of the errors is discussed
in the text.

B �Gcav Lower �Gcav

bound
Upper �Gcav

bound

0.558774 0.0000 0.0000 0.0000
0.670529 0.0063 0.0041 0.0080
0.726406 0.0151 0.0089 0.0265
0.748757 0.0213 0.0147 0.0364
0.782284 0.0300 0.0214 0.0534
0.894039 0.0633 0.0476 0.0983
1.005793 0.1333 0.1122 0.1694
1.117548 0.2243 0.1913 0.2650
1.206952 0.3022 0.2580 0.3535
1.296356 0.3890 0.3386 0.4427
1.38576 0.4894 0.4316 0.5472
1.475164 0.6073 0.5450 0.6653
1.564568 0.7507 0.6828 0.8087
1.653971 0.9116 0.8312 0.9782
1.743375 1.1136 1.0181 1.1847
1.832779 1.3607 1.2523 1.4353
1.922183 1.6053 1.4710 1.7006
2.011587 1.8873 1.7401 1.9853
2.100991 2.1909 2.0238 2.2988
2.190395 2.5079 2.3251 2.6179
2.279799 2.8874 2.6867 3.0000
2.369202 3.2967 3.0646 3.4293
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cavity with the same volume. Figure 3 shows the same FEP
data reported in Figure 2a along with the �Gcav for 3, 5 or 7
small spheres, which are in contact by one point. The
arrangement of the cavities is shown in Figure 4. If one
considers the errors intrinsic to the free-energy-perturbation
approach (see above), the multiple cavity data are in good
agreement with the data of FEC for a single cavity of the same
volume. The use of a ™representative spherical∫ cavity is
therefore justified even for systems that are far from perfectly
spherical.

Figure 3. Comparison of the free energies for a single cavity (�) and a
cavity with the same volume built from 3 (�), 5 (�) or 7 (�) adjacent
cavities.

Figure 4. Water cavity arrangement for the data of Figure 3.

Conclusion

The free energy for the formation of a cavity in water has been
calculated from free-energy-perturbation simulations. There
is good agreement with previous similar calculations; this
shows that the results are not a strong function of the force
field used to describe water. The calculations also agree
reasonably well with the analytical approach of Pierotti. The
water hard-sphere diameter was derived in a parameter-free
way (of course, the force field contains parameters but the
FEP procedure does not introduce new parameters after the
molecular mechanics model has been chosen). It is found that
the water radius is not constant and tends to reach a limiting
value of about 1.6 ä. Interestingly, in a recent study[9] one of
us showed that the most appropriate water volume for the
Connolly surface is 16.4 ä3, which results in a radius of 1.58 ä
in noteworthy agreement with the value of 1.6 ä that comes
out of the present work. To account for the variability of the

radius, it is suggested that FEP calculations are tabulated and
used numerically when high accuracy is required. It is also
found that the energy of cavitation is nearly additive; this
would justify the use of a single spherical ™representative∫
cavity to describe highly nonspherical molecules of equal
molecular volume. The results reported here are relevant not
only to the extensive modelling of the solvent effect that is
now being carried out with computer simulations, but may
also be used to understand hydrophobic interactions in which
the energy of cavity formation plays an important role.[10]
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